40,361 research outputs found

    Multiple phase transitions in single-crystalline Na1−δ_{1-\delta}FeAs

    Full text link
    Specific heat, resistivity, susceptibility and Hall coefficient measurements were performed on high-quality single crystalline Na1−δ_{1-\delta}FeAs. This compound is found to undergo three successive phase transitions at around 52, 41, and 23 K, which correspond to structural, magnetic and superconducting transitions, respectively. The Hall effect result indicates the development of energy gap at low temperature due to the occurrence of spin-density-wave instability. Our results provide direct experimental evidence of the magnetic ordering in the nearly stoichiometric NaFeAs.Comment: 4 pages, 4 figure

    The Range of Validity for the Kelvin Force

    Full text link
    In a recent Letter, Luo, Du and Huang reported a novel convective instability driven by a force rarely studied before -- that exerted by an external magnetic field on a strongly magnetizable liquid. The associated physics is surprisingly rich and promises many more interesting results for the future. Unfortunately, the analysis starts from a misconception and employs the Kelvin force outside its range of validity. Since few would recognize this as a mistake, and since its consequence in the given experiment is particularly direct and critical, this is a point well worth being clarified, and clearly understood.Comment: 1 pag

    Linear and Non Linear Effects on the Newtonian Gravitational Constant as deduced from the Torsion Balance

    Full text link
    The Newtonian gravitational constant has still 150 parts per million of uncertainty. This paper examines the linear and nonlinear equations governing the rotational dynamics of the torsion gravitational balance. A nonlinear effect modifying the oscillation period of the torsion gravitational balance is carefully explored.Comment: 11 pages, 2 figure

    Shock-induced consolidation and spallation of Cu nanopowders

    Get PDF
    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (∼11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u_i) ranges from 0.2 to 2 km s^(−1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u_i are identified for the onset plasticity at the contact points (0.2 km s^(−1)) and complete void collapse (0.5 km s^(−1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u_i, while the pronounced, grain-wise deformation may contribute as well at high u_i. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (∼10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity

    Spin and Lattice Structure of Single Crystal SrFe2As2

    Get PDF
    We use neutron scattering to study the spin and lattice structure on single crystals of SrFe2As2, the parent compound of the FeAs based superconductor (Sr,K)Fe2As2. We find that SrFe2As2 exhibits an abrupt structural phase transitions at 220K, where the structure changes from tetragonal with lattice parameters c > a = b to orthorhombic with c > a > b. At almost the same temperature, Fe spins in SrFe2As2 develop a collinear antiferromagnetic structure along the orthorhombic a-axis with spin direction parallel to this a-axis. These results are consistent with earlier work on the RFeAsO (R = rare earth elements) families of materials and on BaFe2As2, and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compound of these FeAs-based high-transition temperature superconductors.Comment: 14 pages with 4 figure
    • …
    corecore